The Foramen Ovale Morphometry of Sphenoid Bone in South Indian Population

JYOTHSNA PATIL1, NAVEEN KUMAR2, MOHANDAS RAO K.G.3, SWAMY RAVINDRA S.4, SOMAYAJI S N.5, SATHEESHA NAYAK B.6, SAPNA MARPALLI7, ASHWINI L.S.8

ABSTRACT

Background: The foramen ovale is an oval opening in the greater wing of sphenoid bone transmitting the mandibular nerve as its major content. It serves as an important landmark for neurosurgeons in certain procedures as to gain access to trigeminal nerve. Therefore, its topographic position in relation to adjacent bony landmarks provides useful tool during these procedures.

Aim: To analyse the morphometric measurements of the foramen ovale among South Indian population.

Material and Methods: Morphometric analysis was carried out on 104 foramina ovalia of 52 dry human skulls from South India. Following dimensions of foramen ovale were measured: antero-posterior length, transverse width, distance (d1) from tubercle of root of zygoma to the centre of the foramen (CF) and distance (d2) from the midline of the base of the skull to CF.

RESULTS

The mean antero-posterior length was 7.0±2.17mm on right side and 6.8±1.40mm on left side, its mean transverse width was 5.0±0.42mm on right side and 4.70±0.91mm on left side respectively. Mean d1 was 32.58±1.72mm on right side and 32.75±1.76mm on left side. Mean d2 was 25.83±1.26mm on right side and 25.08±1.31mm on left side.

Conclusion: Regional variations in the morphometric measures may be useful in neurosurgical procedures like administration of anaesthesia involving the mandibular nerve.

DISCUSSION

Numerous studies on the morphometric and developmental aspect of foramen ovale have been done worldwide. Developmental study in Japan showed an average maximal length of foramen ovale to be 7.48 mm and average minimal length to be 4.17 mm. However, authors did not observe any statistical differences between right and left side morphometry [4]. A German study showed length of foramen ovale to be 7.2mm and its width to be 3.7mm in an adult skull [5]. Fluoroscopically-assisted laser targeting of the foramen ovale conducted in New York showed mean length of 6.9mm on right side and 6.8mm on left side. Average width of foramen ovale was 3.4mm on right side and 3.8mm on left side [6]. These findings appear to be low compared to that of other studies reported earlier. In the present study, maximum length of foramen ovale was reported to be 9.8mm and minimum was
2.9mm. Yanagi S. [4] and Lang J et al., [5] in their studies inferred that the average length of foramen ovale was about 7.2mm in adults. This value also confirms our findings. More than 24% of the foramina ovalia studied were with the average length 7.0mm. As far as width of the foramen was concerned, the current study reports the maximum width of foramen ovale as 5mm and the minimum width as 3.5mm, with average width being 5mm. Width of more than 57% of foramina ovalia was with the range of 3.0 - 3.5mm and the rest were either above or below this range.

Variation in the dimension and shape of foramen ovale can be explained on the basis of development. Sphenoid bone develops from both intramembranous and endochondral ossification with the pre-sphenoid and post-sphenoid centres. While both centres contribute to the basisphenoid (body) part and lesser wing, the post-sphenoid centre forms the greater wing and pterygoid process of sphenoid bone. The foramen ovale is situated at the posterior border of greater wing of sphenoid bone [13]. When the mandibular nerve becomes enclosed by the cartilage, the foramen ovale is formed. However, in early stage of embryogenesis (22-24 week) this foramen can be demonstrated as a discrete ring-shaped opening in the area of non-osified cartilaginous part, which in later life (3 years after birth) can be known as definitive foramen [4]. The bony overgrowth during its developmental process is often evidenced by the appearance of tubercle, bony spur, and bony plate surrounding the foramen ovale. Thus, the occasional presence of an accessory foramen beside the ovale is probably due to interaction of different parts of membrane bone and the venous plexus from the middle meningeal veins to pterygoid venous plexus [14].

Narrow size of foramen ovale is a common manifestation in the clinical scenario of Paget's disease or osteoporosis [15]. Unusual position of foramen ovale and persistence of neighbouring bony structures may manipulate the anatomical organization of the nerves which are transmitted through the foramen. This, often results in the lateral disposition of mandibular nerve resulting in the entrapment of its branches between bony structure and the neighbouring muscles which might lead to neuralgia [11]. FNAC through foramen ovale is done to diagnose squamous cell carcinoma, meningioma and also for deep lesions biopsy [16].

Localizing the exact position of foramen ovale by measuring the distance from the root of the zygoma to its centre becomes vital during penetrating procedures to reach the structures passing through it, as any failure in this may often lead to the injury to the structures in and around the foramen, including haemorrhage in the temporal lobe of the brain [17]. Thus, along with skin markers and image intensifier techniques, these measurements for locating foramen ovale can be used as additional aid for above said surgical invasive procedures [17-19]. However, it should be kept in mind that, these parameters are not similar in all individuals as the location of zygomatic point in Korean population and in population of certain western countries often varies [20].

COnCluSIOn

Morphometric analysis from the current study mostly falls well within the range of other study results pertaining to Asian population. Though, the morphometric measurements of foramen ovale of right and left side are statistically insignificant, the results of both sides mark the evidence of asymmetry in the morphometry of the foramina ovalia in South Indian population. As the morphometric aspects of the foramen ovale vary in different countries and regions, knowledge of specific regional morphometric analysis of foramen ovale becomes necessary to aid in respective clinical and surgical procedures.
REFERENCES

PARTICULARS OF CONTRIBUTORS:

1. Lecturer, Department of Anatomy, Melaka Manipal Medical College (Manipal campus), Manipal University, Manipal, Karnataka, India.
2. Lecturer, Department of Anatomy, Melaka Manipal Medical College (Manipal campus), Manipal University, Manipal, Karnataka, India.
3. Professor, Department of Anatomy, Melaka Manipal Medical College (Manipal campus), Manipal University, Manipal, Karnataka, India.
4. Lecturer, Department of Anatomy, Melaka Manipal Medical College (Manipal campus), Manipal University, Manipal, Karnataka, India.
5. Professor, Department of Anatomy, Melaka Manipal Medical College (Manipal campus), Manipal University, Manipal, Karnataka, India.
6. Professor, Department of Anatomy, Melaka Manipal Medical College (Manipal campus), Manipal University, Manipal, Karnataka, India.
7. Lecturer, Department of Anatomy, Melaka Manipal Medical College (Manipal campus), Manipal University, Manipal, Karnataka, India.
8. Lecturer, Department of Anatomy, Melaka Manipal Medical College (Manipal campus), Manipal University, Manipal, Karnataka, India.

NAME, ADDRESS, E-MAIL ID OF THE CORRESPONDING AUTHOR:

Mr. Naveen Kumar,
Department of Anatomy, Melaka Manipal Medical College (Manipal campus), Manipal University, Manipal, Karnataka, India.
Phone: +918882548536, Fax: 91-820-2571905, E-mail: naveentonse@gmail.com

FINANCIAL OR OTHER COMPETING INTERESTS: None.

Date of Submission: Sep 03, 2013
Date of Peer Review: Oct 11, 2013
Date of Acceptance: Oct 27, 2013
Date of Publishing: Dec 15, 2013