How to cite this article:
CASE REPORT

Tuberculous Osteomyelitis Of Sternum: A Case Report

JAIN V K, SINGH Y, SHUKLA A, MITTAL D

ABSTRACT

Primary mycobacterial infection of the sternum is extremely uncommon. We present a case of tuberculous osteomyelitis of sternum successfully treated with four drug antituberculous therapy. Tuberculous sternal osteomyelitis is rare entity and one should suspect tuberculosis in a case of chronic draining sinus.

Key message
1. Tuberculous sternal osteomyelitis is an extremely rare entity.
2. It should be suspected in regions where tuberculosis is prevalent.
3. It should be treated by medical treatment with or without surgery.

Key words Sternum; Tuberculosis; Osteomyelitis

Introduction

Sternal tuberculous osteomyelitis is exceedingly rare. Kelly and Chetty reviewed the world literature till 1985 and found only 6 cases of sternal tuberculosis [1]. Through various search engines (Pubmed, Google, Embase, Altavista) we found fewer than 35 cases of sternal tuberculosis in the world English literature [2],[3],[4],[5],[6],[7],[8]. We report a case of sternal tuberculosis with draining sinus.

Case report

An 18-year-old boy from low socio economic background presented with two months history of pain and draining sinus over the sternum. The pain had started insidiously, and gradually worsened with time. The pain was dull and aching and the patient reported it as a 5 on the scale of 1-10 with 10 being the most severe. The pain was non-radiating and patient reported no pain elsewhere, the pain was relieved by anti inflammatory medications and was aggravated by physical activity. There was associated history of fever, weight loss, loss of appetite, night sweats, malaise and fatigue. There was no history of trauma. The patient had no history of previous illness, injuries and or surgery. His father was treated for pulmonary tuberculosis in the past. There was no history of cough or dyspnoea. On physical examination, the patient was ill and reported moderate to severe pain in the sternal region. Physical examination revealed sinus over the sternum. The sinus was of about less than a cm in size and draining serous material. The sinus was extended up to the bone and adhered to the underlying tissues.

On palpation and percussion, there was tenderness over sternum. However there was no tenderness over spine and para spinal muscles in the thoracic region. The range of motion of spine was within normal limits. The abdomen was soft and non tender with no organomegaly. Other systems were normal. Laboratory findings revealed elevated erythrocyte sedimentation rate (ESR) of 50 mm (Westergren method) after one hour and a positive C-reactive
protein (CRP) test. A mantoux tuberculin skin test (purified protein derivative, 5 tuberculin units) was positive with 14 mm of induration observed 48 hours after administration. A plain chest radiograph posterior-anterior and lateral views, showed no lung infiltration, pleural effusion, enlargement of hilar lymph nodes and any bone involvement. A sinus tract biopsy was taken blindly under local anesthesia and histologic examination of the biopsy showed caseous necrosis with an accumulation of epithelioid cells and Langhan’s giant cells. The diagnosis was compatible with tuberculosis. [Table/fig1]. Ziehl -nelsen stain was positive for Acid Fast Bacilli (AFB) and a positive culture for AFB was present on microbiologic examination.

Table/fig1

![Photomicrograph shows large areas of caseous necrosis along with epithelioid cell granuloma and Langhan’s giant cells, H&E x 400](image)

On Magnetic Resonance Imaging (MRI) T2 and T2 STIR images taken in different planes showed destruction, soft tissue swelling, caseation and cold abscess formation. Soft tissue swelling and expansion were seen as T2 hyperintensity, while caseation and necrosis were seen as T2 hypointense lesion [Table/fig 2],[Table/fig 3], [Table/fig 4], [Table/fig 5].

Table/fig 2

![T2 Weighted sagital image of sternum showing expansion with cold abscess formation and caseous necrosis (Black arrows).](image)

The patient received 4 months of anti-tubercular chemotherapy, consisting of four drugs (isoniazid [INH], pyrazinamide, ethambutol, and rifampicin). He was given 3 drugs (INH, rifampicin and ethambutol) in the next four months and 2 drugs (INH and rifampicin) for 10 months. His fever was subsided after 2 months of treatment and at the end of anti-tuberculous treatment, the sinus healed without any complications his appetite and growth indices improved significantly.

Table/fig 3

![T2 Weighted axial image of sternum showing increased signal, soft tissue swelling and expansion (arrow).](image)

Discussion

The sternum as the site of infection is infrequently encountered and tuberculous sternal osteomyelitis is even rarer. Tuberculosis of bones and joints accounts for 1–3% of patients with tuberculosis and isolated sternum tuberculosis representing less than 1% tubercular osteomyelites [9],[10]. Less than thirty five cases have been reported so far in the world literature [2],[3],[4],[5],[6],[7],[8]. In a large series from india, by Tuli and Sinha, out of 980
Tuberculous osteomyelitis of the sternum: A case report

Table/fig 4

T2 fat suppressed image shows hyperintensity in sternal region with a hypointense centre suggesting caseation within the lesion (arrow).

Table/fig 5

T2 Weighted image shows patchy hyperintensity in sternum with expansion.

cases of ostearticular tuberculosis, 14 (1.5%) were found to be due to tuberculosis of the sternum [11]. In a review of 417 tuberculosis (TB) patients, Davies et al. reported only two cases of sternal tuberculosis [12]. Since 1985, sternal TB has been reported in association with spontaneous fracture of sternum, disseminated tuberculosis, diabetes mellitus and post coronary by pass surgery. Atypical mycobacteria are known to cause post operative infection [13],[14]. Sternal osteomyelitis of tuberculous origin is generally caused by reactivation of latent foci of primary tuberculosis formed during hematogenous or lymphatic dissemination, in contrast to pyogenic osteomyelitis. Direct extension from contiguous mediastinal lymph nodes has also been described [2]. The known risk factors for tuberculosis are underlying debilitating disorders, corticosteroid therapy, malnutrition, low socio-economic status, and ethanol abuse, history of exposure to tuberculosis, HIV infection and immunocompromised states [11]. Similarly the index patient also belongs to low socio-economic class. Sternal TB presents insidiously predominantly with pain and swelling. Concomitant extrasternal tuberculosis has been reported in 8 out of 20 cases reviewed by Mclellan et al [15]. Sternal TB has been predominantly described in adult patients as in our case however there are few paediatric cases in record. Sternal tuberculosis has also been reported after BCG vaccination in paediatric age group. Kato et al and corrales et al reported sternal TB in 9 month and 13 month old child respectively [16],[17]. Imaging technique as seen in index patient plays an important role in diagnosis and follow up. According to Tuli and Sinha[11], radiological signs occur much later than the presenting clinical features, and abscesses or sinuses are present much before the focus is detected radiologically, similarly in the index patient chest radiograph did not reveal any lesion. The Computed tomography (CT) scan is more sensitive for anatomical localization and in detecting osseous destruction and soft tissue abnormalities. Khalil et al reviewed the utility of CT scan findings for the diagnosis of chest wall TB and described characteristic ring enhancing hypodense soft tissue lesion [18]. Atasoy et al suggested the role of Magnetic Resonance Imaging (MRI) for detecting early marrow and soft tissue involvement due to high contrast resolution of MRI [19]. Tuberculous osteomyelitis is characterized by low signal replacement of the normal marrow fat signal on T1-weighted images, with high signal intensities on T2-weighted images and enhancement on T1-weighted images [20]. However early diagnosis is established with microbiologic and histopathologic examination. In the present case, biopsy was useful to confirm the presence of TB or exclude other conditions such as pyogenic infections and malignancy. Possible complications of sternal tuberculous osteomyelitis include secondary infection, fistula formation, spontaneous fractures of the sternum, compression or erosion of the large blood vessels, compression of the trachea and migration of tuberculous abscess.
into the mediastinum, pleural cavity or subcutaneous tissues [2] similarly the index patient presented with discharging sinus due to subcutaneous extension of the tuberculous abscess. Treatment is based on long duration antituberculous multidrug therapy, however some authors believe that surgical treatment is necessary to prevent recurrence. Sarlak et al [21] treated a case of primary sternal TB with resection and rotational flap. Hajjar et al [22] did resection and reconstruction of primary sternal TB in an 81 year old man. Recently Ford et al [23] described successful management of tuberculous osteomyelitis of sternum with debridement and vacuum assisted closure. In our case we treated the patient successfully with multidrug therapy alone. Patient is doing well after one year post antituberculous therapy.

Conflict of Interest: None declared

References

