Morphometric Study of Suprascapular Notch in Indian Dry Scapulae with Specific Reference to the Incidence of Completely Ossified Superior Transverse Scapular Ligament

ABSTRACT

Background: The suprascapular notch, a depression on the lateral part of the superior border of the scapula, medial to the coracoid process, is bridged by the superior transverse scapular ligament, which is sometimes ossified and the foramen which is thus completed, transmits the suprascapular nerve to the supraspinatus fossa. Variations in the morphology of suprascapular notch have been identified as one of the causes of suprascapular nerve entrapment. Rengachary et al. classified this notch into six types, based on its shape.

Aim of Study: To study morphological variations of suprascapular notch in Indian dry scapulae and to analyze the incidence of completely ossified superior transverse scapular ligament with other ethnic populations which have been cited earlier.

Materials and Methods: A total of 400 human dry scapulae which were obtained from the Department of Anatomy of selected eight medical colleges were analyzed. The type of suprascapular notch was noted and it was recorded as per the description given by Rengachary et al. The results of the present study were compared with the results of previous authors in different populations.

Results: In our study, out of 400 scapulae, 40 (10%), were identified to have completely ossified superior transverse scapular ligaments. The frequencies of various types of suprascapular notches were: Type I -20%, Type II -10%, Type III -22%, Type IV -4%, Type V -4%, Type VI -10%.

Conclusion: Since the suprascapular nerve entrapment syndrome might be caused by complete ossification of superior transverse scapular ligament with formation of suprascapular foramen and other morphometric variations of suprascapular notch, the knowledge on such variations is essential for clinicians, for making a proper diagnosis and for planning the most suitable surgical intervention.

Keywords: Suprascapular notch, Suprascapular nerve, Superior transverse scapular ligament, Suprascapular foramen

INTRODUCTION

The suprascapular notch (SSN) is a depression on the lateral part of the superior border of the scapula, medial to the coracoid process. This structure is bridged by the superior transverse scapular ligament (STSL), which is sometimes ossified and the foramen which is thus completed, transmits the suprascapular nerve (SN) to the supraspinatus fossa [1,2]. Suprascapular nerve supplies motor branches to the muscles supraspinatus and infraspinatus, and sensory branches to rotator cuff muscles, and ligamentous structures of the shoulder and acromioclavicular joints. Accordingly, this notch is an important landmark of the suprascapular nerve during arthroscopic shoulder operations [3,4].

Furthermore, variations in the morphology of suprascapular notch have been identified as one of the causes of suprascapular nerve entrapment [5]. Rengachary et al., [6-8], classified this notch into six types, based on its shape and they also stated that the size of the suprascapular notch played a role in the predisposition for suprascapular nerve entrapment. In their opinion, a small notch gave a greater chance of a nerve impingement than a large one. One of the clinically most important places on the scapula is the suprascapular notch. The suprascapular nerve and vein run below this superior transverse scapular ligament, and above the ligament passes suprascapular artery [9-12].

Morphological variations of the suprascapular notch are very important clinically for possible predisposing factors, for compression of the suprascapular nerve in this region. In the whole population, approximately 1–2% all shoulder pain is caused by the suprascapular nerve entrapment syndrome [13]. Suprascapular nerve entrapment was first described by Kopell and Thompson [14]. The result of suprascapular nerve entrapment is weakness of the arm, difficulty in external rotation and abduction, and then, atrophy of the infraspinatus and supraspinatus muscles. This entrapment syndrome is most frequently found in volleyball players and athletes who repeatedly experience stress on their shoulder. These include baseball players, weight lifters, tennis players, fencers, hunters using bows, dancers, figure skaters and individuals with occupations which require a lot of overhead work which requires extreme abduction and external rotation [15-19].

The suprascapular notch type, apart from the anatomical interest, may have some clinical significance for suprascapular nerve entrapment [20-22]. The size and shape of the suprascapular notch may be a factor in suprascapular nerve entrapment, because narrow suprascapular notches have been found in patients with this syndrome [23-28].

Aim of study

To study morphological variations of suprascapular notch in Indian dry scapulae and to analyze the incidence of completely ossified superior transverse scapular ligament with other ethnic populations which have been cited earlier.

MATERIALS AND METHODS

A total of 415 human scapulae of unknown ages and sexes, which were collected from the Department of Anatomy of Mahatma Gandhi
DISCUSSION
The incidence of completely ossified superior transverse scapular ligaments in our present study was 10% and ranges of 10.57%

<table>
<thead>
<tr>
<th>Serial No</th>
<th>Author (year of study)</th>
<th>Total No. of Scapulae Studied</th>
<th>No. Scapulae with suprascapular foramen</th>
<th>(n=17) Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G Soni [28]</td>
<td>100</td>
<td>3</td>
<td>3%</td>
</tr>
<tr>
<td>2</td>
<td>Khan M A et al., [29]</td>
<td>Single case report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Das et al., [30]</td>
<td>Single case report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Iqbal et al., [31]</td>
<td>250</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>5</td>
<td>Muralidhar Reddy [32]</td>
<td>104</td>
<td>2</td>
<td>1.93%</td>
</tr>
<tr>
<td>6</td>
<td>Vyas et al., [33]</td>
<td>300</td>
<td>11</td>
<td>3.67%</td>
</tr>
<tr>
<td>7</td>
<td>Kalpana et al., [34]</td>
<td>100</td>
<td>2</td>
<td>2%</td>
</tr>
<tr>
<td>8</td>
<td>Pragna et al., [35]</td>
<td>80</td>
<td>3</td>
<td>3.75%</td>
</tr>
<tr>
<td>9</td>
<td>Vandana and Sudha et al., [36]</td>
<td>134</td>
<td>17</td>
<td>12.6%</td>
</tr>
<tr>
<td>10</td>
<td>Jadhave et al., [28]</td>
<td>350</td>
<td>37</td>
<td>10.57%</td>
</tr>
<tr>
<td>11</td>
<td>Present study</td>
<td>400</td>
<td>40</td>
<td>10%</td>
</tr>
</tbody>
</table>

[Table/Fig-3]: Comparative statement of incidence of completely ossified superior transverse scapular ligament in Indian population studied by different authors

and 12.6% have been reported by Vandana and Sudha et al., [36] and Jadhave et al., [28] [Table/Fig-3]. However, Muralidhar Reddy et al., [32], G Soni et al., [28], Vyas et al., [33], Kalpana et al., [34] and Pragna et al., [35] have reported lesser incidences, i.e., 1.95% to 3.75%. The incidence of suprascapular foramen in Indian dry

[Table/Fig-4]: Comparative statement of Incidence of suprascapular foramen in different population studied by different authors

the classification which was stated by Rengachary et al., [6-8]: Type I – complete absence of notch. Type II - wide blunted V shaped notch occupying a third of superior border of scapula. Type III - symmetrical and U shaped notch with parallel lateral margins. Type IV - small V shaped notch. Type V - U shaped notch with partial ossification of medial part of suprascapular ligament. Type VI - complete ossified ligament with bony foramen of variable size. He also suggested that various transitions existed between these types of notches.

RESULTS
In the present study out of 400 scapulae, 40 (10%) scapulae were found to have completely ossified superior transverse scapular ligaments. Representative photographs of various notch types in our study are shown in [Table/Fig-1]. On analysis of morphological variations of suprascapular notch, we found: Type I - 20%, Type II - 10%, Type III - 52%, Type IV - 4%, Type V - 4%, Type VI - 10%. [Table/Fig-2].
scapulae was relatively significant in comparison to those seen in other ethnic studies. This observation was significant as compared to those of other studies done on various ethnic populations. It has been reported to be more in Brazilian (30.76%) population, followed by Turkish (12.5%) and American (6.5%) populations [Table/Fig-4].

Ticiero et al., [41] classified suprascapular notch on basis of morphological appearance as U and V. Iqbal et al., [21] reported three types of suprascapular notches, based on their shapes, ‘U’, ‘V’, ‘J’ on gross examination, following the observations cited by Bayramoglu et al., [46], Hrdicka [21]. Nastis et al., [43] distinguished V notch on the basis of vertical and transverse diameter measurements and Polguj et al., [13] used geometrical parameters for assessment of V shape suprascapular notch. In our present study, we applied the classification of six types of suprascular notches, which was stated by Rengachary et al.. Morphological classification of suprascapular notch in the present study represented Type III (52%) more, followed by Type I, Type IV and Type VI. Since no uniform standard of classification was followed by different authors, it was difficult to do a reasonable comparative study on the reports of various authors. However, we compared our results with those of few authors who also followed Rengachary’s classification [Table/Fig-5]. Our results were in accordance with reports of Murulakhar et al., in Indian population and similar findings on Americans, Kenyans and Italians, which were reported by Rengachary et al., [6-8], Sinkeet et al., [44] and Paolo et al., [27].

<table>
<thead>
<tr>
<th>Numbers</th>
<th>Population (n)</th>
<th>Type</th>
<th>Type II</th>
<th>Type III</th>
<th>Type IV</th>
<th>Type V</th>
<th>Type VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rengachary et al., [6-8]</td>
<td>American (211)</td>
<td>8%</td>
<td>31%</td>
<td>48%</td>
<td>3%</td>
<td>6%</td>
<td>4%</td>
</tr>
<tr>
<td>Sinkeet et al., [44]</td>
<td>Kenyan (138)</td>
<td>22%</td>
<td>21%</td>
<td>9%</td>
<td>5%</td>
<td>18%</td>
<td>4%</td>
</tr>
<tr>
<td>Murulakhar [32]</td>
<td>Indian (104)</td>
<td>21.15%</td>
<td>8.65%</td>
<td>59.61%</td>
<td>2.88%</td>
<td>5.76%</td>
<td>1.93%</td>
</tr>
<tr>
<td>Paolo Albino et al., [27]</td>
<td>Italian (500)</td>
<td>12.4%</td>
<td>19.8%</td>
<td>22.8%</td>
<td>31.1%</td>
<td>10.2%</td>
<td>3.6%</td>
</tr>
<tr>
<td>Present study</td>
<td>Indian (400)</td>
<td>20%</td>
<td>10%</td>
<td>52%</td>
<td>4%</td>
<td>4%</td>
<td>10%</td>
</tr>
</tbody>
</table>

[Table/Fig-5]: Frequency of various types of suprascapular notch (SSN) in different populations

CONCLUSION
Since the suprascapular nerve entrapment syndrome might be caused by complete ossification of superior transverse scapular ligament with formation of suprascapular foramen and other morphometric variations of suprascapular notch, the knowledge on such variations is essential for clinicians, for making a proper diagnosis and for planning the most suitable surgical interventions. Further detailed ventures like: (a) clinical screening of high risk population by specialists of community medicine, sports medicine, orthopaedicians and general surgeons for the incidence of suprascapular nerve entrapment syndrome, (b) confirmation of suprascapular nerve entrapment syndrome by radiologists by using imaging modalities like MRI, CT and Ultrasound and (c) surgical interventions for either open or laparoscopic suprascapular nerve entrapment syndrome, coupled with histopathological studies on suprascapular nerve may throw fresh information on this issue.

ACKNOWLEDGEMENTS
We duly acknowledge with thanks, the cooperation rendered by the Dean and H.O.D. of Anatomy Department of Shri Sathya Sai Medical College and Research Institute, Dean of Mahatma Gandhi Medical College and Research Institute, and Vice Chancellor of Sri Balaji Vidyapeeth University, Pondicherry, India.

REFERENCES

1. Aarupadai Veedu Medical College, India.
2. Indira Gandhi Medical College and Research Institute, India.
PARTICULARS OF CONTRIBUTORS:

1. Assistant Professor, Department of Anatomy, Mahatma Gandhi Medical College and Research Institute, Pillayarkuppam, Pondicherry, India.
2. Associate Professor, Department of General Surgery, Mahatma Gandhi Medical College and Research Institute, Pillayarkuppam, Pondicherry, India.
3. Professor, Department of Anatomy, Mahatma Gandhi Medical College and Research Institute, Pillayarkuppam, Pondicherry, India.
4. Professor and HOD, Department of Anatomy, Mahatma Gandhi Medical College and Research Institute, Pillayarkuppam, Pondicherry, India.

NAME, ADDRESS, E-MAIL ID OF THE CORRESPONDING AUTHOR:
Dr. Usha Kannan,
Assistant Professor, Department of Anatomy, Mahatma Gandhi Medical College and Research Institute, Pillayarkuppam, Pondicherry-607402, India.
Phone: 9843320521, E-mail: drushakannan@yahoo.com

FINANCIAL OR OTHER COMPETING INTERESTS: None.

Date of Submission: Oct 14, 2013
Date of Peer Review: Nov 09, 2013
Date of Acceptance: Dec 19, 2013
Date of Publishing: Mar 15, 2014